DPP - 3 (PEE)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/88

Video Solution on YouTube:- https://youtu.be/yMof5Q3IttU

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/28

Q 1. A particle of mass 3 m at rest decays into two particles of masses m and 2 m having non-zero velocities. The ratio of the de-Broglie wavelengths of the particles $\left(\frac{\lambda_{1}}{\lambda_{2}}\right)$ is:
(a) $1 / 2$
(b) $1 / 4$
(c) 2
(d) None

Q 2. The energy of a photon is equal to the kinetic energy of a proton. The energy of the photon is E. Let λ_{1} be the de-Broglie wavelength of the proton and λ_{2} be the wavelength of the photon. The ratio $\frac{\lambda_{1}}{\lambda_{2}}$ is proportional to:
(a) E°
(b) $\mathrm{E}^{1 / 2}$
(c) E^{-1}
(d) E^{-2}

Q 3. A beam of electron is used in an YDSE experiment. The slit width is d. When the velocity of electron is increased, then
(a) no interference is observed
(b) fringe width increases
(c) fringe width deereases
(d) fringe width remains same

Q 4. If λ_{p} and λ_{e} denote the de-Broglie wavelength of proton and electron after they are aecelerated from rest through the same potential difference, then -
(a) $\lambda e=\lambda p$
(b) $\lambda e<\lambda p$
(c) $\lambda e>\lambda p$
(d) $\lambda e=\lambda p / 2$

Q 5. The de Broglie wavelength of a bus moving with speed v is λ. Some passengers left the bus at a stopage. Now when the bus moves with twice its initial speed. Now kinetic energy is found to be twice its initial value. What will be the de Broglie wavelength, now-
(a) λ
(b) 2λ
(c) $\lambda / 2$
(d) $\lambda / 4$

Q 6. A monochromatic radiation of wavelength λ_{1} is incident on a stationary atom as a result of which the wavelength of the photon after the collision becomes λ_{2} and the recoiled atom has De Broglie's wavelength λ_{3}. Then,
(a) $\lambda_{3}=\sqrt{\lambda_{1} \lambda_{2}}$
(b) $\lambda_{I}=\frac{\lambda_{2} \lambda_{3}}{\lambda_{2}+\lambda_{3}}$
(c) $\lambda_{I}=\sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}}$
(d) $\lambda_{3}=\sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}}$

Q 7. If E_{1}, E_{2} and E_{3} represent respectively the kinetic energies of an electron, an alpha particle and a proton each having same de Broglie wavelength then:
(a) $\mathrm{E}_{1}>\mathrm{E}_{3}>\mathrm{E}_{2}$
(b) $\mathrm{E}_{2}>\mathrm{E}_{3}>\mathrm{E}_{1}$

(c) $\mathrm{E}_{1}>\mathrm{E}_{2}>\mathrm{E}_{3}$
(d) $\mathrm{E}_{1}=\mathrm{E}_{2}=\mathrm{E}_{3}$

Q 8. An electron of mass m, when accelerated through a potential difference V has de Broglie wavelength λ. The de Broglie wavelength associated with a proton of mass M when accelerated by same potential difference is
(a) $\lambda \sqrt{\frac{\mathrm{M}}{\mathrm{m}}}$
(b) $\lambda \sqrt{\frac{\mathrm{m}}{\mathrm{M}}}$
(c) $\lambda \frac{\mathrm{M}}{\mathrm{m}}$
(d) $\lambda \frac{\mathrm{m}}{\mathrm{M}}$

Q 9. A particle is moving in a closed orbit near origin, due to a force which is directed towards origin. The de Broglie wavelength of particle varies from λ_{1} to λ_{2} cyclically $\left(\lambda_{1}>\lambda_{2}\right)$. Then
(a) Particle could be moving in a circular orbit with centre at origin.
(b) Particle could be moving in a elliptical orbit with one focus at origin.
(c) When de Broglie wavelength is λ_{1}, the particle is nearer to origin than when its value is λ_{2}.
(d) When de Broglie wavelength is λ_{2}, the particle is nearer to origin than when its value is λ_{1}

Q 10. The ratio of de Broglie wavelengths of proton and an alpha particle will be $1: 2$, if their
(a) kinetic energies are in ratio $1: 8$
(b) kinetic energies are in ratio 8:1
(c) Speeds are in ratiò $1: 8$
(d) Speeds are in ratio 8:1

Answer Key

Q. 1	d	Q. 2	b	Q. 3	c	Q. 4	c	Q. $5 \quad$ a
Q. 6	b	Q. 7	a	Q. 8	b	Q. 9	b,	d

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach \times Study Planner

No cost EMI

18 months
No cost EMI

12 months
12 months
No cost EMI

6 months
No cost EMI
₹28,000

To be paid as a one-time payment
View all plans
9
Add a referral code

PHYSICSLIVE

© India's Best Educators
© Interactive Live Classes
© Structured Courses \& PDFs
© Live Tests \& Quizzes
\times Personal Coach
\times Study Planner
₹ $2,100 / \mathrm{mo}$ +10\% OFF ₹50,400

$$
+10 \% \text { OFF ₹ } 42,525
$$

6 months
No cost EMI

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.
₹4,200/mo

$$
+10 \% \text { OFF ₹ } 25,200
$$

JEE Main \& Advanced, NSEP, INPhO, IPhO Physics DPP - Solution

DPP- 3 Matter waves
By Physicsaholics Team

Q1) A particle of mass 3 m at rest decays into two particles of masses m and 2 m having non-zero velocities. The ratio of the de-Broglie wavelengths of the particles $\left(\frac{\lambda_{1}}{\lambda_{2}}\right)$ is :

$$
\text { Initial momentum }=0
$$

$$
\text { final }<=0
$$

(a) $1 / 2$

$$
\text { (b) } 114
$$

(c) 2

Q2) The energy of a photon is equal to the kinetic energy of a proton. The energy of the photon is E. Let λ_{1} be the de-Broglie wavelength of the proton and λ_{2} be the wavelength of the photon. The ratio $\frac{\lambda_{1}}{\lambda_{2}}$ is proportional to:

$$
\begin{aligned}
& E=\frac{h c}{\delta_{2}} \\
& \delta_{1}=\frac{h}{\sqrt{2 m E}} \\
& \delta_{b}=\frac{\delta_{1}}{\delta_{2}}=\frac{f^{2}}{\sqrt{2 m E}} \times \frac{E}{2 c}=\frac{1}{\frac{E}{2 m}} \\
& \begin{array}{ll}
\text { (b) } E^{1 / 2} & \text { (d) } E^{-2}
\end{array}
\end{aligned}
$$

(a) E°

Q3) A beam of electron is used in an YDSE experiment. The slit width is d. When the velocity of electron is increased, then

$$
\text { Slit width } d=\frac{\delta D}{d}=\frac{\hbar D}{d m b}
$$

(b) fringe width increases
(a) no interference is observed (c) fringe width) decreases
(d) fringe width remains same

Q4) If λ_{p} and λ_{e} denote the de-Broglie wavelength of proton and electron after they are accelerated from rest through the same potential difference, then -

(a) $\lambda e=\lambda p$

(d) $\lambda \mathrm{e}=\lambda \mathrm{p} / 2$

Q5) The de Broglie wavelength of a bus moving with speed vis λ. Some passengers left the bus at a stopage. Now when the bus moves with twice its initial speed. Now kinetic energy is found to be twice its initial value. What will be the de Broglie wavelength, now-

(a) x
(c) $\lambda / 2$

$$
\begin{aligned}
& =\frac{1}{2} m v^{2} \\
& =\frac{1}{2} m v v \\
& P=\frac{2 K^{2}}{v} \\
& \text { (d) } \lambda / 4
\end{aligned}
$$

Q6) A monochromatic radiation of wavelength λ_{1} is incident on a stationary atom as a result of which the wavelength of the photon after the collision becomes λ_{2} and the recoiled atom has De Broglie's wavelength λ_{3} Then,
(a) $\lambda_{3}=\sqrt{\lambda_{1} \lambda_{2}}$
(b) $\lambda_{1}=\frac{\lambda_{2} \lambda_{3}}{\lambda_{2}+\lambda_{3}}$
(c) $\lambda_{1}=\sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}}$
(d) $\lambda_{3}=\sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}}$

$$
\sim_{S_{2}}
$$

Q7) If E_{1}, E_{2} and E_{3} represent respectively the kinetic energies of an electron, an alpha particle and a proton each having same de Broglie wavelength then:

$$
S=\frac{h}{\sqrt{2 m E}}
$$

Same $\delta \Rightarrow$ amu \Rightarrow highomass, lower E

$$
m_{e} \wedge m_{p}<m_{\alpha} \Rightarrow E_{e}>E_{B}>E_{\alpha} \Rightarrow E_{1}>E_{3}>E_{2}
$$

(a) $E_{1}>E_{3}>E_{2}$
(b) $E_{2}>E_{3}>E_{1}$
(c) $E_{1}>E_{2}>E_{3}$
(d) $E_{1}=E_{2}=E_{3}$

Q8) An electron of mass m, When accelerated through a potential difference V has de Broglie wavelength λ. The de Broglie wavelength associated with a proton of mass M when accelerated by same potential difference is

$$
S=\frac{h}{\sqrt{2 m e v}}
$$

(a)
(b)

Q9) A particle is moving in a closed orbit near origin, due to a force which is directed towards origin. The de Broglie wavelength of particle varies from λ_{1} to λ_{2} cyclically $\left(\lambda_{1}>\lambda_{2}\right)$. Then

$X(a)$ Particle could be moving in a circular orbit with centre at origin.
(b) Particle could be movingis a elliptical orbitwith one focus at origin.
(ec) When de Broglie wavelength is λ_{1}, the particle is nearer to origin than whenits vaue is λ_{2}.
(d) When de Broglie wavelength is λ_{2}, the particle is nearer to origin than when its value is π_{1}

Q10) The ratio of de Broglie wavelengths of proton and an alpha particle will be 1:2 ,if their
(a) kinetic energies are in ratio $1: 8$
(b) kinetic energies are in ratio $8: 1$
(c) Speeds arein ratiol:8
(d) Speeds are in ratio $8: 1$

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/88

Video Solution on YouTube:-
https://youtu.be/yMof5Q3IttU

Written Solution on Website:-

Chalo Nikis

