

DPP – 3 (PEE)

Video Solution on Website:-	https://physicsaholics.com/home/courseDetails/88		
/ideo Solution on YouTube:-	https://youtu.be/yMof5Q3lttU		
Written Solution on Website:-	https://physicsaholics.com/note/notesDetalis/28		
- <u>-</u>	the ratio of the de-Broglie wavelengths of the particles $\left(\frac{\lambda_1}{\lambda_2}\right)$ is:		
photon is E. Let λ_1 be	on is equal to the kinetic energy of a proton. The energy of the the de-Broglie wavelength of the proton and λ_2 be the wavelength to $\frac{\lambda_1}{\lambda_2}$ is proportional to: (c) E^{-1} (d) E^{-2}		
Q 3. A beam of electron is velocity of electron is (a) no interference is (c) fringe width decre	observed (b) fringe width increases		
	through the same potential difference, then – (b) $\lambda e < \lambda p$ (c) $\lambda e > \lambda p$ (d) $\lambda e = \lambda p/2$		
bus at a stopage. No	ength of a bus moving with speed v is λ . Some passengers left the when the bus moves with twice its initial speed. Now kinetic twice its initial value. What will be the de Broglie wavelength, (b) 2λ (c) $\lambda/2$ (d) $\lambda/4$		
result of which the wa	liation of wavelength λ_1 is incident on a stationary atom as a avelength of the photon after the collision becomes λ_2 and the Broglie's wavelength λ_3 . Then,		

Q 7. If E_1 , E_2 and E_3 represent respectively the kinetic energies of an electron, an alpha particle and a proton each having same de Broglie wavelength then:

(a)
$$E_1 > E_3 > E_2$$

(b)
$$E_2 > E_3 > E_1$$

hysicsaholics

(c) $E_1 > E_2 > E_3$

- (d) $E_1 = E_2 = E_3$
- An electron of mass m, when accelerated through a potential difference V has de Q 8. Broglie wavelength λ . The de Broglie wavelength associated with a proton of mass M when accelerated by same potential difference is

(b) $\lambda \sqrt{\frac{m}{M}}$ (d) $\lambda \frac{m}{M}$

(c) $\lambda \frac{M}{m}$

- Q9. A particle is moving in a closed orbit near origin, due to a force which is directed towards origin. The de Broglie wavelength of particle varies from $\lambda_1\,$ to $\lambda_2\,$ cyclically $(\lambda_1 > \lambda_2)$. Then
 - (a) Particle could be moving in a circular orbit with centre at origin.
 - (b) Particle could be moving in a elliptical orbit with one focus at origin.
 - (c) When de Broglie wavelength is λ_1 , the particle is nearer to origin than when its value is λ_2 .
 - (d) When de Broglie wavelength is λ_2 , the particle is nearer to origin than when its value is λ_1
- Q 10. The ratio of de Broglie wavelengths of proton and an alpha particle will be 1:2, if
 - (a) kinetic energies are in ratio 1:8
 - (b) kinetic energies are in ratio 8:1
 - (c) Speeds are in ratio 1:8
 - (d) Speeds are in ratio 8:1

Answer Key

Q.1 d	Q.2 b	Q.3 c	Q.4 c	Q.5 a
Q.6 b	Q.7 a	Q.8 b	Q.9 b, d	Q.10 d

Use code PHYSICSLIVE to get 10% OFF on Unacademy PLUS.

JEE Main & Advanced, NSEP, INPhO, IPhO Physics DPP - Solution

DPP- 3 Matter waves By Physicsaholics Team

Q1) A particle of mass 3m at rest decays into two particles of masses m and 2 m

Q2) The energy of a photon is equal to the kinetic energy of a proton. The energy of the photon is E. Let λ_1 be the de-Broglie wavelength of the proton and λ_2 be the wavelength of the photon. The ratio $\frac{\lambda_1}{\lambda_2}$ is proportional to:

$$E = \frac{RC}{S_2}$$

$$S_1 = \frac{R}{\sqrt{2mE}} \times \frac{E}{\sqrt{2mE}} \times \frac{E}{\sqrt{2mE}$$

Q3) A beam of electron is used in an YDSE experiment. The slit width is d. When the velocity of electron is increased, then

Slit width
$$d = \frac{SD}{d} = \frac{RD}{dmV}$$

- (a) no interference is observed
- (c) fringe width decreases

- (b) fringe width increases
- (d) fringe width remains same

Q4) If λ_p and λ_e denote the de-Broglie wavelength of proton and electron after they are accelerated from rest through the same potential difference, then -

Q5) The de Broglie wavelength of a bus moving with speed v is λ . Some passengers left the bus at a stopage. Now when the bus moves with twice its initial speed. Now kinetic energy is found to be twice its initial value. What will be the de Broglie

wavelength, now-

 $\begin{array}{cccc}
& = \frac{1}{z} m v^{2} \\
& = \frac{1}{z} m v v \\
& = \frac{PV}{z} \\
& = \frac{2K^{2}}{v} \\
& (d) \lambda /4
\end{array}$

Q6) A monochromatic radiation of wavelength λ_1 is incident on a stationary atom as a result of which the wavelength of the photon after the collision becomes λ_2 and the recoiled atom has De Broglie's wavelength λ_3 . Then,

Q7) If E_1 , E_2 and E_3 represent respectively the kinetic energies of an electron, an alpha particle and a proton each having same de Broglie wavelength then:

$$S = \frac{f}{\sqrt{2} \text{ m E}}$$

$$S_{\text{ama m E}} \Rightarrow f_{\text{ijhi}} \text{ max is flowy E}$$

$$M_{\text{e}} \iff M_{\text{p}} \iff M_{\text{d}} \Rightarrow E_{\text{p}} \Rightarrow E_{\text{d}} \Rightarrow E_{\text{l}} \Rightarrow$$

Q8) An electron of mass m ,When accelerated through a potential difference V has de Broglie wavelength λ . The de Broglie wavelength associated with a proton of mass M when accelerated by same potential difference is

Q9) A particle is moving in a closed orbit near origin, due to a force which is directed towards origin. The de Broglie wavelength of particle varies from λ_1 to λ_2

cyclically $(\lambda_1 > \lambda_2)$. Then

 χ (a) Particle could be moving in a circular orbit with centre at origin. $= \gamma P$

- (b) Particle could be moving in a elliptical orbit with one focus at origin.
- When de Broglie wavelength is λ_1 , the particle is nearer to origin than when its value is λ_2 .
- (d) When de Broglie wavelength is λ_2 , the particle is nearer to origin than when its value is λ_1

Q10) The ratio of de Broglie wavelengths of proton and an alpha particle will be 1:2, if their

- (a) kinetic energies are in ratio 1:8
- (b) kinetic energies are in ratio 8:1
- (c) Speeds are in ratio 1:8
- (d) Speeds are in ratio 8:1

$$\frac{1}{2} \times \frac{4 \text{MV}_{x}}{2} = \frac{1}{2}$$

$$\frac{k_{P}}{k_{X}} = \frac{1}{8} \Rightarrow \frac{\sqrt{p}}{\sqrt{q}} = \frac{8}{1}$$

$$\frac{1}{4} \times 6 \times 6 = 16$$

For Video Solution of this DPP, Click on below link

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/88

Video Solution on YouTube:-

https://youtu.be/yMof5Q3lttU

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/28

@Physicsaholics

@Physicsaholics_prateek

@NEET_Physics

@<u>IITJEE_Physics</u>

physicsaholics.com

Unacademy

CUSIS NIKIS